skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Coleine, Claudia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Use of synthetic microbial communities (SynComs) is a promising approach that harnesses nature‐based solutions to support soil fertility and food security, mitigate climate change impacts, and restore terrestrial ecosystems. Several microbial products are in the market, and many others are at different stages of development and commercialization. Yet, we are still far from being able to fully harness the potential and successful applications of such biotechnological tools. The limited field efficiency and efficacy of SynComs have significantly constrained commercial opportunities, resulting in market growth falling below expectations. To overcome these challenges and manage expectations, it is critical to address current limitations, failures, and potential environmental consequences of SynComs. In this Viewpoint, we explore how using multiple eco‐evolutionary theories can inform SynCom design and success. We further discuss the current status of SynComs and identify the next steps needed to develop and deploy the next generation of tools to boost their ability to support multiple ecosystem services, including food security and environmental sustainability. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Soil organisms represent the most abundant and diverse organisms on the planet and support almost every ecosystem function we know, and thus impact our daily lives. Some of these impacts have been well-documented, such as the role of soil organisms in regulating soil fertility and carbon sequestration; processes that have direct implications for essential ecosystem services including food security and climate change mitigation. Moreover, soil biodiversity also plays a critical role in supporting other aspects from One Health—the combined health of humans, animals, and the environment—to the conservation of historic structures such as monuments. Unfortunately, soil biodiversity is also highly vulnerable to a growing number of stressors associated with global environmental change. Understanding how and when soil biodiversity supports these functions, and how it will adapt to changing environmental conditions, is crucial for conserving soils and maintaining soil processes for future generations. In this Essay, we discuss the fundamental importance of soil biodiversity for supporting multiple ecosystem services and One Health, and further highlight essential knowledge gaps that need to be addressed to conserve soil biodiversity for the next generations. 
    more » « less
    Free, publicly-accessible full text available March 27, 2026
  3. Abstract BackgroundRock-dwelling microorganisms are key players in ecosystem functioning of Antarctic ice free-areas. Yet, little is known about their diversity and ecology, and further still, viruses in these communities have been largely unexplored despite important roles related to host metabolism and nutrient cycling. To begin to address this, we present a large-scale viral catalog from Antarctic rock microbial communities. ResultsWe performed metagenomic analyses on rocks from across Antarctica representing a broad range of environmental and spatial conditions, and which resulted in a predicted viral catalog comprising > 75,000 viral operational taxonomic units (vOTUS). We found largely undescribed, highly diverse and spatially structured virus communities which had predicted auxiliary metabolic genes (AMGs) with functions indicating that they may be potentially influencing bacterial adaptation and biogeochemistry. ConclusionThis catalog lays the foundation for expanding knowledge of virosphere diversity, function, spatial ecology, and dynamics in extreme environments. This work serves as a step towards exploring adaptability of microbial communities in the face of a changing climate. 
    more » « less